Found 1011 Hypotheses across 102 Pages (0.01 seconds)
  1. Population size is associated with implement elaborateness.Read, Dwight - An Interaction Model for Resource Implement Complexity Based on Risk and Num..., 2008 - 5 Variables

    In this paper, the authors analyzed data on 20 hunter-gatherer groups in order to understand the factors that influence the diversity and elaborateness of their tool assemblages. They used data collected by a variety of ethnographers to draw inferences about the complexity of implement assemblages and how it is affected by ecological constraints, modes of resource procurement, group movement, and population size. Regression analysis showed that the two strongest predictors of implement complexity were growth season (GS) (as a proxy for risk) and the number of annual residential moves (NMV). With the understanding that NMV and GS are likely not independent, the authors created addition and interaction models to understand how these variables may work in tandem to influence implement diversity and elaborateness. The results show that a shorter growing season (higher risk) and a lower number of moves are correlated with greater implement complexity. This analysis also divided the hunter-gatherers into two subgroups: a subgroup characterized by higher diversity of complex implements and more elaborate individual implements than predicted by the model, and a subgroup characterized by lower diversity and less elaborateness than predicted. These subgroups were found to correspond with the distinction between foragers (groups that move more-or-less as a unit while gathering) and collectors (groups that gather (logistically from a more-or-less fixed settlement), with the higher diversity subgroup being made up mostly of collectors and the lower diversity subgroup being made up mostly of foragers. Finally, the authors suggest that under conditions where population growth leads to increased density, foraging strategies will tend to shift to collector strategies in conjunction with increased elaborateness of implements to exploit resources with greater intensity.

    Related HypothesesCite
  2. The evolution of animistic concepts will be positively associated with the greatest time depth of ancestral hunter-gatherer groups (264).Peoples, Hervey C. - Hunter-gatherers and the origins of religion, 2016 - 2 Variables

    What is the evolutionary sequence of beliefs in hunter-gatherers? The authors attempt to answer this question by reconstructing the development of various traits in traditional societies using phylogenetic and linguistic source trees. Testing for correlated evolution between this reconstruction and population history as proxied by linguistic classification suggests the presence of animism at profound time depth, aligning with classical anthropological religious theory put forth by E.B. Tylor. Coevolutions between other religious concepts including shamanism, ancestor worship, active ancestor worship, high gods, active high gods, and belief in an afterlife are also examined.

    Related HypothesesCite
  3. Risk in subsistence strategies is associated with implement elaborateness.Read, Dwight - An Interaction Model for Resource Implement Complexity Based on Risk and Num..., 2008 - 7 Variables

    In this paper, the authors analyzed data on 20 hunter-gatherer groups in order to understand the factors that influence the diversity and elaborateness of their tool assemblages. They used data collected by a variety of ethnographers to draw inferences about the complexity of implement assemblages and how it is affected by ecological constraints, modes of resource procurement, group movement, and population size. Regression analysis showed that the two strongest predictors of implement complexity were growth season (GS) (as a proxy for risk) and the number of annual residential moves (NMV). With the understanding that NMV and GS are likely not independent, the authors created addition and interaction models to understand how these variables may work in tandem to influence implement diversity and elaborateness. The results show that a shorter growing season (higher risk) and a lower number of moves are correlated with greater implement complexity. This analysis also divided the hunter-gatherers into two subgroups: a subgroup characterized by higher diversity of complex implements and more elaborate individual implements than predicted by the model, and a subgroup characterized by lower diversity and less elaborateness than predicted. These subgroups were found to correspond with the distinction between foragers (groups that move more-or-less as a unit while gathering) and collectors (groups that gather (logistically from a more-or-less fixed settlement), with the higher diversity subgroup being made up mostly of collectors and the lower diversity subgroup being made up mostly of foragers. Finally, the authors suggest that under conditions where population growth leads to increased density, foraging strategies will tend to shift to collector strategies in conjunction with increased elaborateness of implements to exploit resources with greater intensity.

    Related HypothesesCite
  4. The frequency of hunter-gatherer movement is associated with implement elaborateness.Read, Dwight - An Interaction Model for Resource Implement Complexity Based on Risk and Num..., 2008 - 6 Variables

    In this paper, the authors analyzed data on 20 hunter-gatherer groups in order to understand the factors that influence the diversity and elaborateness of their tool assemblages. They used data collected by a variety of ethnographers to draw inferences about the complexity of implement assemblages and how it is affected by ecological constraints, modes of resource procurement, group movement, and population size. Regression analysis showed that the two strongest predictors of implement complexity were growth season (GS) (as a proxy for risk) and the number of annual residential moves (NMV). With the understanding that NMV and GS are likely not independent, the authors created addition and interaction models to understand how these variables may work in tandem to influence implement diversity and elaborateness. The results show that a shorter growing season (higher risk) and a lower number of moves are correlated with greater implement complexity. This analysis also divided the hunter-gatherers into two subgroups: a subgroup characterized by higher diversity of complex implements and more elaborate individual implements than predicted by the model, and a subgroup characterized by lower diversity and less elaborateness than predicted. These subgroups were found to correspond with the distinction between foragers (groups that move more-or-less as a unit while gathering) and collectors (groups that gather (logistically from a more-or-less fixed settlement), with the higher diversity subgroup being made up mostly of collectors and the lower diversity subgroup being made up mostly of foragers. Finally, the authors suggest that under conditions where population growth leads to increased density, foraging strategies will tend to shift to collector strategies in conjunction with increased elaborateness of implements to exploit resources with greater intensity.

    Related HypothesesCite
  5. The emphasis of a subsistence strategy on either land or aquatic animals will be associated with implement elaborateness.Read, Dwight - An Interaction Model for Resource Implement Complexity Based on Risk and Num..., 2008 - 7 Variables

    In this paper, the authors analyzed data on 20 hunter-gatherer groups in order to understand the factors that influence the diversity and elaborateness of their tool assemblages. They used data collected by a variety of ethnographers to draw inferences about the complexity of implement assemblages and how it is affected by ecological constraints, modes of resource procurement, group movement, and population size. Regression analysis showed that the two strongest predictors of implement complexity were growth season (GS) (as a proxy for risk) and the number of annual residential moves (NMV). With the understanding that NMV and GS are likely not independent, the authors created addition and interaction models to understand how these variables may work in tandem to influence implement diversity and elaborateness. The results show that a shorter growing season (higher risk) and a lower number of moves are correlated with greater implement complexity. This analysis also divided the hunter-gatherers into two subgroups: a subgroup characterized by higher diversity of complex implements and more elaborate individual implements than predicted by the model, and a subgroup characterized by lower diversity and less elaborateness than predicted. These subgroups were found to correspond with the distinction between foragers (groups that move more-or-less as a unit while gathering) and collectors (groups that gather (logistically from a more-or-less fixed settlement), with the higher diversity subgroup being made up mostly of collectors and the lower diversity subgroup being made up mostly of foragers. Finally, the authors suggest that under conditions where population growth leads to increased density, foraging strategies will tend to shift to collector strategies in conjunction with increased elaborateness of implements to exploit resources with greater intensity.

    Related HypothesesCite
  6. A longer growing season (GS) and a higher number of annual moves (NMV) is correlated with lower implement diversity and elaborateness.Read, Dwight - An Interaction Model for Resource Implement Complexity Based on Risk and Num..., 2008 - 7 Variables

    In this paper, the authors analyzed data on 20 hunter-gatherer groups in order to understand the factors that influence the diversity and elaborateness of their tool assemblages. They used data collected by a variety of ethnographers to draw inferences about the complexity of implement assemblages and how it is affected by ecological constraints, modes of resource procurement, group movement, and population size. Regression analysis showed that the two strongest predictors of implement complexity were growth season (GS) (as a proxy for risk) and the number of annual residential moves (NMV). With the understanding that NMV and GS are likely not independent, the authors created addition and interaction models to understand how these variables may work in tandem to influence implement diversity and elaborateness. The results show that a shorter growing season (higher risk) and a lower number of moves are correlated with greater implement complexity. This analysis also divided the hunter-gatherers into two subgroups: a subgroup characterized by higher diversity of complex implements and more elaborate individual implements than predicted by the model, and a subgroup characterized by lower diversity and less elaborateness than predicted. These subgroups were found to correspond with the distinction between foragers (groups that move more-or-less as a unit while gathering) and collectors (groups that gather (logistically from a more-or-less fixed settlement), with the higher diversity subgroup being made up mostly of collectors and the lower diversity subgroup being made up mostly of foragers. Finally, the authors suggest that under conditions where population growth leads to increased density, foraging strategies will tend to shift to collector strategies in conjunction with increased elaborateness of implements to exploit resources with greater intensity.

    Related HypothesesCite
  7. Resource scarcity will be associated with expressed resource need/conservation ethic (360).Low, Bobbi S. - Behavioral ecology of conservation in traditional societies, 1996 - 3 Variables

    This article investigates resource availability and use in traditional societies, testing the belief that traditional societies are more environmentally responsible and sustainable. The author finds that these pre-industrial societies often do not express a conservation ethic; in fact, there are cases where resource use causes environmental degradation, especially following rapid population growth or technological development. In short, resource practices are affected by ecological variables, not by a particular attitude shared by traditional societies.

    Related HypothesesCite
  8. Diversity and complexity of toolkits used by farming and herding groups will be positively associated with risk of resource failure (2).Collard, Mark - Risk of resource failure and toolkit variation in small-scale farmers and he..., 2012 - 11 Variables

    Prior research by Oswalt (1973, 1976) and Torrence (1983, 2001) has suggested that risk of resource failure is a significant predictor of toolkit complexity and diversity among hunter-gatherers. In this paper, the same relationship is tested among small-scale herding and farming groups. However, no significant correlation is discovered between any measure of resource risk and any measure of toolkit complexity. The researchers suggest that this absence may be the result of greater reliance on non-technological diversification methods among farmers (i.e. spatial diversification, mixed farming, intercropping), or of other unaccounted-for sources of risk (i.e. intergroup raiding and warfare).

    Related HypothesesCite
  9. Increase in size of areas controlled by any single political unit has been accelerating with respect to time (300)Hart, Hornell - Was there a prehistoric trend from smaller to larger political units?, 1944 - 3 Variables

    This study examines technological and political development in prehistoric societies. Results suggest a significant correlation between technological and political development in non-industrial societies. Results also suggest that, in prehistoric epochs, the area controlled by a group of people has increased at an accelerating rate of speed over time.

    Related HypothesesCite
  10. Traditions of local democracy will be positively associated with rule of law, control of corruption, and per capita income (86).Giuliano, Paola - The transmission of democracy: from the village to the nation-state, 2013 - 4 Variables

    This paper adds to a body of research which analyzes the persistence of institutional features in societies over time by testing for association between local democracy (succession by consensus among preindustrial groups) and various measures of democracy in contemporary societies. The researchers conclude that beliefs and values which perceive democracy as a viable political structure may be an important mediating mechanism in producing and maintaining democratic instututions over time.

    Related HypothesesCite